#AI ASIC
高盛:AI 伺服器需求再超預期:機架級、ASIC、液冷全線加速!
我們更新了全球伺服器總潛在市場的覆蓋範圍,具體包括:(1)人工智慧訓練伺服器(全機架 / 高功率)、(2)人工智慧推理伺服器、(3)通用伺服器、(4)高性能計算(HPC)伺服器,以及(5)美國和中國頭部雲服務商的資本支出。隨著 AMD 發佈 “Helios” 人工智慧伺服器機架,我們將全機架伺服器預測範圍擴大至更多元化的晶片平台,預計 2025 年、2026 年(預測)、2027 年(預測)的機架級伺服器數量分別為 1.9 萬台、5.5 萬台、8 萬台。專用積體電路(ASIC)人工智慧伺服器方面,我們預計 ASIC 的採用率將加速提升,其在人工智慧晶片中的佔比將從此前預測的 2025/2026/2027 年38%/40%/45%,上調至 38%/40%/50%。結合 ASIC 和 GPU 架構的基板式人工智慧伺服器需求上調、人工智慧全機架納入更多元化晶片平台,以及 2026 年下半年將有更多搭載新型人工智慧晶片的伺服器推出,我們上調了全球人工智慧伺服器出貨量預測,預計 2025-2027 年(預測)人工智慧晶片需求將達 1100 萬 / 1600 萬 / 2100 萬顆(圖表 1)。我們認為,人工智慧基礎設施周期將持續至 2027 年(預測),為行業增長提供支撐。人工智慧伺服器推薦標的:Wiwynn/ 緯創Wistron(原始設計製造商,ODM)、Hon Hai/ FII(ODM)、LandMark(矽光技術)、VPEC(矽光技術)、AVC/ Fositek(液冷)、Auras(液冷)、King Slide(滑軌)、Chenbro(機箱)、EMC(覆銅板,CCL)、GCE(印刷電路板,PCB)、TSMC(晶圓代工廠;重點推薦)、MPI(探針卡)、WinWay(測試插座)、Aspeed(無晶圓廠模式)、Hon Precision(最終測試處理器)。圖表 1:人工智慧伺服器預測:隱含 GPU 與 ASIC 出貨量人工智慧伺服器更新要點在全球雲服務商資本支出增加及人工智慧應用普及率提升的支撐下,我們上調了高功率人工智慧伺服器(搭載算力超 500 兆次 / 秒的 ASIC 和 GPU,如 H200、B200 等)2025-2027 年的出貨量預測,同比增幅分別為 9%/30%/50%;同時上調推理型人工智慧伺服器(搭載算力低於 500 兆次 / 秒的晶片,如 L40S、L20、ASIC 等)同期出貨量預測,同比增幅分別為 7%/3%/2%。近期人工智慧模型迭代持續推進,Gemini 3 Deep Think、OpenAI GPT-5.2、DeepSeekV3.2 及Qwen Code v0.5.0 等模型已陸續上線。隨著更多晶片平台轉向機架級設計,我們將全機架人工智慧伺服器(如搭載 GB200、GB300、MI450 系列等)2025-2027 年(預測)出貨量預測上調至 1.9 萬 / 5.5 萬 / 8 萬台(此前僅針對輝達機架的預測為 1.9 萬 / 5 萬 / 6.7 萬台),對應總潛在市場規模分別為 550 億 / 1650 億 / 2550 億美元(此前 2025-2027 年預測僅輝達機架的規模為 540 億 / 1570 億 / 2320 億美元)。雲服務商資本支出客戶支出方面,我們的美國網際網路團隊預測,2025-2027 年(預測)美國頭部雲服務商資本支出合計同比增幅將達 78%/37%/15%(高於 9 月更新時的 67%/23%/15%);中國網際網路團隊則預計,同期中國頭部雲平台資本支出同比增幅將達 62%/17%/9%(高於此前的 55%/8%/6%)。伺服器行業前景展望1. 人工智慧訓練伺服器 —— 全機架預測擴展至更多晶片平台全機架人工智慧伺服器(如採用 NVL72/NVL144 配置的 GB200/GB300/Vera Rubin,及採用 Helios 配置的 MI450 系列)自 2024 年第四季度隨輝達 Blackwell 平台開始出貨,預計 2026 年下半年起,包括 AMD Helios 機架在內的更多伺服器將採用全機架設計。我們現將非輝達全機架納入預測,預計 2025-2027 年(預測)全機架出貨量為 1.9 萬 / 5.5 萬 / 8 萬台(此前僅輝達機架為 1.9 萬 / 5 萬 / 6.7 萬台),對應總潛在市場規模 550 億 / 1650 億 / 2550 億美元(此前 2025-2027 年(預測)僅輝達機架為 540 億 / 1570 億 / 2320 億美元)2. 人工智慧訓練伺服器 —— 高功率機型出貨量加速增長高功率人工智慧訓練伺服器(如 H200/B200/B300 伺服器及 ASIC 人工智慧伺服器,單晶片算力超 500 兆次 / 秒)方面,以 8 GPU 等效單位計算,預計 2025-2027 年(預測)出貨量為 69.2 萬 / 95.2 萬 / 122.7 萬台,同比增幅 26%/38%/29%(此前預測為 63.7 萬 / 73.2 萬 / 81.9 萬台),對應總潛在市場規模 1800 億 / 2050 億 / 2510 億美元(此前預測為 1360 億 / 1380 億 / 1390 億美元)。我們看好基板式人工智慧伺服器的需求前景,因其定製化空間更大且能減輕客戶預算壓力;同時,高功率 ASIC 晶片的產能提升也支撐我們對該細分領域的積極看法。3. 推理型伺服器緊隨增長推理型伺服器(如 L40S/L20 伺服器及 ASIC 人工智慧伺服器,單晶片算力低於 500 兆次 / 秒)方面,預計 2025-2027 年(預測)出貨量為 47 萬 / 53.9 萬 / 65.6 萬台,同比增幅 1%/15%/22%(此前預測為 44.1 萬 / 52.2 萬 / 64.6 萬台),對應總潛在市場規模 300 億 / 360 億 / 480 億美元(此前預測為 270 億 / 300 億 / 360 億美元)。增長動力主要來自人工智慧應用場景的持續拓展。4. 通用伺服器回歸正常增長我們預計 2025-2027 年(預測)其出貨量將實現同比 11%/8%/2% 的增長,營收同比增長 51%/19%/5%,增長支撐因素包括:(1)新 CPU 平台替換周期結束後,出貨量回歸正常增長;(2)資料處理需求提升推動產品結構升級,疊加儲存價格上漲,帶動平均銷售價格(ASP)上升。圖表 2:全球伺服器總潛在市場(TAM):2025-2027 年(預測)同比增長 71%/40%/26%,規模分別達 4330 億 / 6060 億 / 7640 億美元圖表 3:隱含人工智慧晶片出貨量(2027 年預測)圖表 4:機架級人工智慧伺服器:2025-2027 年(預測)輝達機架數量維持 1.9 萬 / 5 萬 / 6.7 萬台不變圖表 5:基板式高功率人工智慧伺服器將維持增長圖表 6:美國頭部雲服務商(CSP)2025-2027 年(預測)資本支出同比增長 78%/37%/15%圖表 7:中國頭部雲服務商 2025-2027 年(預測)資本支出同比增長 62%/17%/9%圖表 8:伺服器總潛在市場(TAM):營收預測調整圖表 9:伺服器總潛在市場(TAM):出貨量預測調整個人電腦(PC):2026 年(預測)/2027 年(預測)同比增長 3%/2%智慧型手機:2026 年(預測)/2027 年(預測)出貨量同比增長 1%/1%;可折疊手機 2026 年 / 2027 年(預測)出貨量達 4600 萬 / 6600 萬台(大行投研)
半導體行業的2026,三大關鍵詞
在剛剛過去的2025年,從“寒王”市值飆升,儲存漲價潮席捲全球,到年末摩爾線程、沐曦股份先後上市刷新新股盈利紀錄,半導體毋庸置疑是熱度最高的類股之一。在這一年裡,全球頭部半導體企業合計銷售額突破4000億美元,創下行業歷史新高,2026年這一記錄或有望再度刷新。步入2026年,那些有望成為下一個產業爆點?在外部環境充滿變數的當下,中國半導體產業又將如何前行?綜合各路分析,《科創板日報》為您整理了三個2026年半導體產業關鍵詞:儲存、AI與中國國產化。一場關於成本、技術與供應鏈的全域博弈即將開場。儲存:漲價或將貫穿全年回看2025年,儲存暴漲就引發了高度關注。供需鴻溝面前,行業龍頭報價接連暴漲。多家儲存產業鏈廠商都預計,儲存短缺將持續到2026年。“我們的產品供應與客戶需求之間存在巨大缺口,且這種短缺局面將持續一段時間。” 美光科技首席商務官蘇米特・薩達納表示。TrendForce預計,後續儲存產業資本開支將持續上漲,其中DRAM資本開支將從537億美元增長至613億美元,同比增長14%;NAND產業資本開支將從211億美元增長至222億美元,同比增幅為5%,但對2026年產能助力有限。因此,中銀證券預計,儲存價格上漲趨勢或將貫穿2026年全年。中國中國國產儲存廠商亦在積極開發4F2+CBA的技術架構以應對全球龍頭廠商的技術競爭。4F2+CBA的架構變化有望為供應鏈帶來增量變化。儲存漲價潮下,全球終端產品迎來艱巨成本考驗,手機及PC供應商計畫通過漲價、縮減規格配置、暫緩升級等措施以平衡成本。此前已有消息稱,聯想、惠普、戴爾等PC廠商已著手重新評估2026年產品規劃。其中,聯想已經通知客戶即將進行漲價調整,所有伺服器和電腦報價在2026年1月1日到期,新報價大幅上漲;戴爾正考慮對伺服器和PC產品漲價,漲價幅度預計至少在15~20%區間;惠普 CEO也表示2026年下半年可能“尤其艱難”,必要時將上調產品價格。值得一提的是,上交所官網12月30日晚間顯示,中國第一、全球第四的DRAM廠商長鑫科技申報科創板IPO獲上交所受理,擬募資295億元;招股書披露,公司2025年第四季度利潤超預期。東吳證券指出,長鑫重點在研的CBA這一走向3D的技術將有望釋放後續持續擴產動能,通過這一另闢蹊徑的方式縮小與三星和海力士的代際差,保證擴產量級,其產業鏈公司將充分受益。裝置環節在受益長鑫充裕擴產之餘,部分優質公司還將享受滲透率快速提升,迎來戴維斯連按兩下;部分代工和封測公司將承接長鑫的代工需求。AI:算力資本開支續漲 AI終端創新元年到來AI熱潮持續多時仍未停歇,帶動全球算力產業鏈延續高增長。即便歷經了泡沫論疑慮,但在展望2026年時,多方機構依舊給出了較為樂觀的預期。受益於CSP、主權雲等算力需求擴張、以及AI推理應用的蓬勃發展,TrendForce預計2026年全球八大雲廠商合計資本支出將增長40%,達到6000億美元,全球AI伺服器出貨量將增長20.9%。一方面,產業重點由訓練開始漸漸向推理轉移,同時得益於大模型在架構上的創新,國內外大模型在多模態理解、推理及AI應用層面均實現持續進階,帶動ASIC熱度上升。國海證券預計,2026年資料中心ASIC晶片出貨量有望超800萬顆,2027年有望突破1000萬顆,未來或將與同期GPU出貨量相近。ASIC崛起下,已有公司相關訂單量開始攀升。例如芯原股份日前公告,2025年10月1日至12月25日期間,公司新簽訂單金額達24.94億元,較2024年Q4全期大增129.94%,較2025年Q3全期增長56.54%。其中,Q4新簽訂單金額中絕大部分為一站式晶片定製業務訂單。展望2026年,東吳證券預計中國國產算力晶片龍頭有望進入業績兌現期,看好中國國產GPU受益於先進製程擴產帶來的產能釋放。考慮到中國國產算力晶片各家參與者為爭奪市場份額而搶奪產能資源,看好AIASIC服務商在供應鏈中的關鍵角色。除了上游算力之外,AI產業鏈中,下游終端也是2026年備受期待的一個環節。券商認為,2026年是AI終端創新元年,Meta、蘋果、Google、OpenAI均將有新終端新品推出。AI終端形態以眼鏡為代表,同時有AI pin、攝影機耳機等新形態。伴隨模型迭代和新終端的應用場景開發加速,下一代爆款終端或在大廠創新周期中應運而生。端雲混合為AI場景賦能,端側SoC持續受益於AI創新浪潮。中國國產化:本土晶片設計企業崛起 多環節迎來機遇在半導體產業發展中,“中國國產化”一直是關鍵引擎之一。多家券商認為,從晶圓代工到半導體裝置,產業鏈多環節都有望在2026年進一步打開中國國產化機遇。資料顯示,2017-2025年中國晶片設計企業數量和銷售額均以兩位數復合增速增長。中國晶片設計企業數量由2017年的1380家增長至2025年的3901家,年均復合增速為14%,其中銷售額過億的企業數量由2017年的191家增長至2025年的831家,年均復合增速20%。從銷售額來看,2017年為1946億元,2024年增至6460億元,年均復合增速19%,高於全球半導體銷售額同期6%的增速。此外,此前2022年半導體行業周期下行,中芯國際、華虹半導體、聯電等晶圓代工廠的產能利用率均下降,但中芯國際和華虹半導體產能利用率較早實現觸底回升。券商認為,這主要得益於大陸晶片設計企業的崛起和製造本土化趨勢。晶圓代工方面,東吳證券預計,先進邏輯擴產量級有望翻倍,晶圓代工景氣維持。目前國內先進製程尤其是7nm及以下供給嚴重不足,在海外斷供的潛在壓力和中國國產先進邏輯晶片可預見的需求旺盛,2026年開始出於保供意圖的先進擴產將十分豐厚,中芯國際和華力集團有望持續擴產先進製程;除此之外,更多的主體將擴產14nm。半導體裝置方面,中信建投指出,在行業擴產整體放緩大背景下,中國國產化驅動下的滲透率提升依然是裝置類股後續增長的重要來源。其預計未來裝置中國國產化率將實現快速提升,頭部整機裝置企業2025年訂單有望實現20%-30%以上增長,零部件、尤其是卡脖子零部件中國國產化處理程序有望加快,類股整體基本面向好。頭部客戶的中國國產替代訴求仍較強,不在清單的客戶也在加速匯入中國國產,預計後續中國國產化率提升斜率更陡峭,裝置廠對供應鏈的中國國產化推進也非常迅速。 (財聯社)
🎯台股再創歷史新高,你是怕被割、還是怕沒上車?Line@連結:https://lin.ee/mua8YUP🎯「大盤創新高,現在進場是不是最後一棒?」如果你也在怕被割, 教你先看一個指標就好大盤漲幅 vs. 融資增幅。把大盤想成跑步距離,融資想成喘氣聲。目前大盤漲約68.6%,融資只增65%。跑得比喘得多,身體還很健康。真正會出事,是哪一天?👉大盤不動了,融資卻還在暴衝👉大家只談賺錢、不談風險👉市場開始「發瘋」既然現在還沒發生我們不必猜頭、自己嚇自己而且AI真正的大戲,才正要開始。為什麼?因為2026年,不是AI結束,是AI真正落地的元年。雲端算力只是第一棒。接下來,是「硬體全面接棒」。🔥 第一站:台積電法說+CES很多人說台積電1500是天花板?但2026年,1500會是地板。二奈米量產、資本支出只會往上。神山一動,供應鏈就是「真金白銀」。👉再看CES。今年主題只有一句話:AI Forward。意思很簡單:AI不只在雲端,而是進到你手機、AR眼鏡、穿戴裝置、機器人裡。AI要「用得到」,不是「聽得到」。⚡ 接棒演出的四大關鍵字,記好:1.CPO矽光子:傳輸大爆炸400G→800G →1.6T光進銅退,沒有模糊空間。這不是升級,是換一條高速公路。2.ASIC:雲端巨頭的省錢神器GPU太貴、太難搶?自己設計最快。2026年ASIC成長速度直接輾壓GPU。3.記憶體+PCB:最粗暴的利多缺貨+漲價=獲利直接跳級。🔴想知道 2026 第一季,哪一檔最先噴?接下來我們會在粉絲團持續幫大家鎖定+追蹤,若還不知道該如何操作?那建議你務必要鎖定江江在Line @,將有更進一步的訊息給大家了解。https://lin.ee/mua8YUP🔴想了解還未起漲的市場主流,同步了解大盤多空轉折點及學習預測技術分析,江江YT節目都會持續追蹤+預告。https://reurl.cc/02drMk********************************************************有持股問題或想要飆股→請加入Line:https://lin.ee/mua8YUP江江的Youtube【點股成金】解盤:https://reurl.cc/02drMk*********************************************************(本公司所推薦分析之個別有價證券 無不當之財務利益關係以往之績效不保證未來獲利 投資人應獨立判斷 審慎評估並自負投資風險)
🎯不是台積電、不是鴻海!2026 CES揭示:這批「實體AI黑馬」主升段才剛開始!Line@連結:https://lin.ee/mua8YUP🎯2025年倒數2天,有人在等崩盤,有人在看3萬點!江江要講真心話:「別讓你的恐懼,成為別人的獲利。」這波台股多頭不是普通強,如果你現在還在被量縮過高背離嚇到不敢動,那你真的看錯行情的本質了。🚀誰說縮量是危機?那是外資在「換手大補貨」!別被空頭洗腦了。現在的量縮叫做「籌碼沈澱」。•空單大撤退:外資空單從4萬口砍到剩2萬出頭。•多頭雙主浪:月線完全沒背離,型態就是「頭頭高」。•元月必勝法:過去15年,元月勝率高達73%。這不是作夢,這是阻力最小的路,29,500點只是剛好而已!🚀CES要來了,AI不再只在雲端。2026 CES 一句話總結:AI有手、有腳、要落地了。機器人、智慧設備、實體AI全部啟動。黃仁勳、蘇姿丰同日對決,不是巧合,是宣告:下游全面升級。🔥 一月飆股在哪?精準布局這四區:1.ASIC客製化:3443創意、3661世芯就像低檔區的獵豹,等訂單放量就是噴發。2.CPO矽光子:輝達標配!3363上詮、3081聯亞、6442光聖、4979華星光、3163波若威等,從配角變主角的放量元年。3.PCB材料革命:M8升至M9。2383台光電、2368金像電、6274台燿、3167大量、8021尖點、4722國精化,獲利成長超乎想像。4.記憶體奇兵:別聽崩盤論!AI落地PC/手機,需求是倍數跳。2344華邦電、2408南亞科、4967十詮、3260威剛、8299群聯,元月隨時發動。🔴接下來我們會在粉絲團持續幫大家鎖定+追蹤,若還不知道該如何操作?那建議你務必要鎖定江江在Line @,將有更進一步的訊息給大家了解。https://lin.ee/mua8YUP🔴想了解還未起漲的市場主流,同步了解大盤多空轉折點及學習預測技術分析,江江YT節目都會持續追蹤+預告。https://reurl.cc/02drMk********************************************************有持股問題或想要飆股→請加入Line:https://lin.ee/mua8YUP江江的Youtube【點股成金】解盤:https://reurl.cc/02drMk*********************************************************(本公司所推薦分析之個別有價證券 無不當之財務利益關係以往之績效不保證未來獲利 投資人應獨立判斷 審慎評估並自負投資風險)
重新洗牌!ASIC晶片破1000萬顆,中國國產AI晶片逆襲機會來了?
人工智慧正通過前所未有的硬體驅動(AI晶片)投資,以驅動全球產業和技術格局。根據專業機構資料,到2030年,用於AI最佳化資料中心的資本支出 (CapEx) 預計將超過7兆美元,這一規模是以往任何計算轉型都無法比擬的。但與過去幾年全球AI硬體以訓練為主不同,當前全球AI晶片市場正在經歷從GPU(圖形處理器)一家獨大,向“GPU與ASIC(專用晶片)共生互補”格局的深刻轉變;這與全球AI日益轉嚮應用端趨勢不謀而合。當然,目前全球人工智慧市場依然由GPU主導,其在市場價值中佔比超過80%,而ASIC僅為8%-11%。但如果以出貨量為指標的話,天平已在悄然傾斜。2025年,Google自研的TPU晶片出貨量預計達150萬-200萬台,亞馬遜AWS的Trainium 2 ASIC約為140萬-150萬台,兩者合計規模已接近同期輝達AI GPU的40%-60%。更具顛覆性的是,隨著Meta計畫2026年量產100萬-150萬顆MTIA晶片,以及微軟2027年啟動大規模ASIC部署。根據野村證券最新資料認為:ASIC整體出貨量有望在2026年某個時間點超越輝達GPU。而根據DIGITIMES預測,ASIC晶片出貨量將在2027年突破千萬規模,與GPU的出貨量相比,已在伯仲之間了。那這是否意味著輝達GPU的市場影響力下降了呢?以輝達為主導的全球GPU市場(AMD配角),其主要優勢在於通用性強、生態壁壘高(CUDA)、適合複雜和快速迭代的任務,如大模型訓練。從目前來看輝達GPU出貨量不會下降,但其市場份額將持續下滑將是必然。這從輝達第三財季的資料也可以得到印證,其第三財季營收為570.1億美元,超出市場預期的549.2億美元; 資料中心營收為512億美元,輕鬆超過分析師預測的490.9億美元,同比增長66%。這鞏固了輝達在人工智慧計算基礎設施領域的領先地位。其中,微軟、亞馬遜、Alphabet和Meta這四家公司合計佔輝達銷售額的40%以上,預計未來12個月這些公司的AI支出總額將增長34%至4400億美元。這說明輝達GPU在全球人工智慧市場中無可取代的地位。但從未來全球資料中心技術路線來看,也已從“單一引擎”進化到“混合架構”;即未來資料中心將普遍採用 “GPU訓練 + ASIC推理”的混合算力策略。這種組合既能利用GPU的靈活性進行模型開發和迭代,又能在模型部署後通過ASIC實現極致的推理能效和成本控制,最佳化整體營運成本(TCO)。從應用場景來說,隨著AI應用大規模落地,推理計算需求正呈指數級增長。有預測顯示,到2026年,推理計算需求可能佔AI總計算需求的70%以上。這種演算法相對固定的規模化場景,正是ASIC發揮其能效和成本優勢的主戰場。全球ASIC的爆發,恰好與中國的產業需求和安全訴求高度契合。這既是機遇,也帶來了獨特的挑戰。中國巨大的應用市場能提供豐富的推理場景,這正是ASIC的優勢領域。同時,外部供應的不確定性,使國產替代從“可選項”變為“必選項”,為本土ASIC創造了關鍵窗口期。何況,自研ASIC能針對特定場景最佳化,實現更好的性價比和能效比。但由於國產AI晶片在單顆晶片的絕對性能上暫時落後,中國企業開創性地將競爭維度提升到了 “系統級” ,即通過架構和互聯技術創新,用多晶片協同來彌補單卡差距。也就是說,國產晶片不再追求在單卡上對標頂級GPU,而是通過超節點(SuperPOD)等先進架構,將成千上萬顆國產晶片高效互聯,形成一個超級電腦等級的統一算力底座。目前,華為的Atlas系列超節點和阿里雲的磐久超節點伺服器已大規模部署,能支撐萬卡級叢集和千億參數大模型的訓練。業界認為,這是規避先進製程限制、持續提供算力的關鍵策略。根據弗若斯特沙利文資料,中國的AI晶片市場規模將從2024年的1425.37億元,激增至2029年的1.34兆元,2025年至2029年的年均複合增長率為53.7%。同時,國產AI晶片的滲透率也在快速提升。根據IDC資料顯示,2024年,中國本土AI晶片品牌滲透率約30%,出貨量達到82萬張,相較上年同期15%的國產品牌滲透率,呈明顯提升趨勢。甚至有分析預測,中國AI晶片市場的本土化率將快速提升至2027年的55%左右。因此,從全球AI晶片的技術趨勢來看,ASIC晶片的應用將愈發廣泛;結合中國市場對供應鏈安全、成本控制和龐大應用場景的需求,這些正推動中國產業走出一條以ASIC和專用晶片為突破口、以系統級叢集能力為槓桿、以應用生態協同為加速器的獨特發展路徑。 (飆叔科技洞察)
🎯台積電、聯發科非首選?解鎖:TPU+GPU雙核心時代台廠最賺的三大贏家!Line@連結:https://lin.ee/mua8YUP🎯台幣狂升、外資連5買下台股即將挑戰前高28554了你還在擔心AI只是曇花一現?醒醒吧!錯過的不只是「一桶金」而是整個AI產業革命的核彈級噴發看看特斯拉,放棄多年電動車策略,把巨資轉向AIMeta也抽手三成元宇宙資源, 全面ALL IN AI全球科技巨頭不是傻瓜他們用真金白銀告訴你AI浪花?不存在!這是長期、勢不可擋的浪潮GPU時代結束了嗎?過去靠輝達(GPU)就夠了但現在不是能不能做而是能不能更快、更省、更狠模型越大,訓練成本暴衝於是雙核心策略誕生:GPU+ASICGPU是萬用瑞士刀,ASIC是斬鐵武士刀Google直接雙路混用AI算力進入「雙核心時代」而台廠就是最大贏家。💥晶圓與設計服務:除了2330台積電之外3443創意、3661世芯-KY、2454聯發科成為ASIC黃金三角下一個成長引擎已啟動⚡電力×散熱:AI伺服器越多,最大瓶頸是電力1513中興電、1519華城、1503士電、1514亞力、2308台達電、2301光寶科、1609大亞、3665貿聯、6781AES-KY、4931新盛力、3211順達等全線受惠液冷時代來臨,伺服器散熱設備需求爆量:6805富世達、3017奇鋐、3324雙鴻、3653健策、8996高力💡CPO/矽光子:AI神經網路啟動!3363上詮、6442光聖、3081聯亞、4979華星光、3450聯鈞、4971IET-KY,以及3189景碩、8046南電、3037欣興、2383台光電、2368金像電、6274台燿等PCB/載板廠,都將同步受惠,訂單密度持續拉高!🔴重申:AI雙核心軍備賽才剛開始。想知道下一波暴利股是哪幾檔?想跟江江一起鎖定台股AI核彈級商機!接下來我們會在粉絲團持續幫大家鎖定+追蹤,若還不知道該如何操作?那建議你務必要鎖定江江在Line @,將有更進一步的訊息給大家了解。https://lin.ee/mua8YUP🔴想了解還未起漲的市場主流,同步了解大盤多空轉折點及學習預測技術分析,江江YT節目都會持續追蹤+預告。https://reurl.cc/02drMk********************************************************有持股問題或想要飆股→請加入Line:https://lin.ee/mua8YUP江江的Youtube【點股成金】解盤:https://reurl.cc/02drMk*********************************************************(本公司所推薦分析之個別有價證券 無不當之財務利益關係以往之績效不保證未來獲利 投資人應獨立判斷 審慎評估並自負投資風險)
中美AI算力中盤博弈:開放與封閉之爭
近日,GoogleTPU攜Gemini3逆襲之勢大幅拓寬增量前景,Meta考慮斥資數十億美元為其買單,機構將TPU產量預期上調67%至500萬塊。基於“晶片-光交換網路-大模型-雲服務”全鏈閉環,Google智算體系重回AI賽道前沿梯隊,標誌著美式封閉壟斷路線更進一步。與此同時,以DeepSeek為代表的開源模型緊追不捨。月初,DeepSeek V3.2及其長思考增強版模型出爐,前者在性能測試中打平ChatGPT,後者直接對標閉源模型頂流Gemini。這也預示著中國開源開放路線漸入佳境,國產智算體系在應用層展現出良好的生態協同潛力。至此,中美AI產業博弈棋至中盤,“開放協同”與“封閉壟斷”對位格局愈發清晰。尤其在智算生態佈局中,兩大陣營或正醞釀著一場體系化能力的巔峰較量。從Gemini 3到TPU v7,軟硬一體閉環臻至極境毋庸置疑,GoogleTPU的突然走紅,很大程度得益於Gemini3的模型能力驗證。作為專為GoogleTensorFlow框架而生的ASIC晶片,TPU憑藉軟硬體一體化設計為其全端閉環完成奠基,同時也在上層應用高位突破時俘獲外部使用者市場,甚至一度被視為輝達GPU的最強平替。所謂“軟硬一體化”,即硬體的設計完全服務於上層的軟體和演算法需求。如Gemini 3訓練和推理過程高度適配TPU叢集,而這種定製化專用模式也在功耗能效方面展現出極高價值——TPU v5e的功耗僅為NVIDIA H100的20%-30%,TPU v7每瓦性能較前代產品翻倍增長。目前,Google通過“晶片+模型+框架+雲服務”的垂直整合,形成了一個封閉且高效的循環。一方面極大地提升了自身AI研發和應用開發效率,另一方面也在NV主流體系下裂土而治,奪得又一智算賽道主導權,Meta對TPU的採購意向則將這一體系熱度推向了高點。業內有觀點指出,從蘋果到Google,美式的垂直封閉玩法幾乎臻至極境,表現出科技巨頭為鞏固和擴張利益版圖,在產業鏈層面泛在的壟斷慾望。但從生態發展角度來看,封閉模式缺乏長期主義精神,極易導致產業長下游喪失創新活性,並形成單一主體高度集權的格局。另外,從TPU的應用場景來看,軟硬一體閉環儼然是專屬於巨頭的遊戲。某分析人士稱,Google的叢集化設計和“軟體黑盒”,需要使用者重新配置一整套異構基礎設施。如果沒有兆參數模型訓練需求,根本填不滿TPU的脈動陣列,省下的電費可能都抵消不了遷移成本。同時,由於TPU技術路線極為封閉,與主流開發環境無法相容,使用者還需要一支專業的工程團隊駕馭其XLA編譯器,重構底層程式碼。也就是說,只有像Google、Meta這種等級的企業才有資格轉向TPU路線,也只有算力規模達到一定程度才能發揮出定製化產物的能效優勢。不可否認,Google等頭部企業通過垂直整合自建閉環,在局部賽道快速實現單點突破,同時也造就了美國科技巨頭林立的蔚然氣象。但在中美AI博弈背景下,美式封閉壟斷路線憑藉先發優勢提前完成了賽道卡位,被動的追隨式趕超已很難滿足中國智算產業的發展需要。“小院高牆”之外,如何充分發揮舉國體制優勢,團結一切力量拆牆修路,成為拉近中美AI體系差距的關鍵。多元異構生態協同,開放路徑通往下一賽點相較於美式寡頭壟斷模式,中國智算產業正基於多元異構體系層層解耦,重塑開放式生態系統。從頂層設計到產業落地,“開源開放+協同創新”已然成為國產軟硬體全端共識。在政策層面,《算力基礎設施高品質發展行動計畫》提出建構佈局合理、泛在連接、靈活高效的算力網際網路,增強異構算力與網路的融合能力,實現多元異構算力跨域調度編排。並且,相關部門多次強調,鼓勵各方主體創新探索智能計算中心建設營運模式和多方協同合作機制。延伸到AI應用層,《關於深入實施“人工智慧+”行動的意見》同樣要求深化人工智慧領域高水平開放,推動技術開源可及......不難看出,國家在人工智慧和智算領域給出了截然不同的中國方案——不在封閉路線中盲目追趕封閉,要在開放格局下謀求錯位趕超。事實上,頂層設計完全基於產業現實需要。在美方科技封鎖下,中國智算產業主要面臨兩大挑戰:單卡算力性能瓶頸、算力成本高。除了在晶片、模型、基礎軟體等核心技術領域持續攻堅外,當前更有效的途徑是發展更大規模、更多元高效的智算叢集,突破AI算力瓶頸。業內調研結果顯示,國內宣佈擁有千卡規模的算力叢集不少於100個,但其中大部分是異構晶片。可以想像,假如不同硬體系統相互封閉,標準介面不統一,軟體棧互不相容,將導致難以實現智算資源的有效整合利用,更無法滿足大規模參數模型的應用需求。根據行業主流觀點,國產AI算力存在多元化、碎片化特徵,同時又具備相當的規模化優勢。當務之急並不是各自埋頭推進單一技術路線,更首要的是盡快打通“技術牆”、“生態牆”,實現產業鏈開放跨層協作,真正釋放總體算力生態潛能,從單點突破邁向整合創新。具體來看,所謂開放路線旨在基於開放的計算架構推動產業生態協同創新。比如通過制定統一的介面規範,聯動晶片、計算系統、大模型等產業鏈上下游企業共同參與生態建設,減少重複性研發和適配投入,共享技術攻關和協同創新效益。同時,隨著開放架構中的協作標準趨於統一,可以進一步打造出商品化的軟硬體技術,用以代替定製化、專有化的系統,進而降低計算產品應用成本,實現覆蓋產業全端的算力普惠。顯然,在中國式開放體系下,國產AI算力正打破GoogleTPU的泛化普及困境,將智算生態系統與各方開發者使用者廣泛連結,最終形成體系化協同戰力,更靈活高效賦能人工智慧+落地。屆時,中美AI博弈也將走出單卡競爭和單一模型比拚,全面迎來生態體系能力的終極對壘。 (伯虎財經)
輝達緊急發聲!
輝達官方稱其技術領先行業一代,是唯一能運行所有AI模型並應用於所有計算場景的平台。周二(11月25日),輝達官方表示,其技術依然領先行業一代,是唯一能夠運行所有人工智慧(AI)模型並應用於所有計算場景的平台。分析認為,輝達此舉是為了回應華爾街對該公司在AI基礎設施領域主導地位可能受到Google晶片威脅的擔憂。輝達在社交平台X上發文稱:“我們對Google的成功感到高興——他們在人工智慧方面取得了巨大進展,而我們也將繼續向Google供貨。”“輝達領先行業整整一代——是唯一一個能運行所有AI模型、並在所有計算場景中部署的平台。”輝達補充道:“與專為特定AI框架或功能設計的ASIC(專用積體電路)晶片相比,輝達提供更高的性能、更強的通用性以及更好的可替代性。”此番表態發佈之際,有報導稱輝達重要客戶之一的Meta,可能與Google達成協議,在資料中心使用Google的張量處理單元(TPU)。受此影響,輝達股價日內一度跌超7%。上周,Google發佈了最新的大語言模型Gemini 3,多位業內權威人士認為其已經“超越”了OpenAI的GPT模型。該模型是使用TPU進行訓練的,而不是輝達GPU。分析師指出,輝達在AI晶片市場的份額超過90%,儘管Blackwell價格昂貴,但性能強大。不過,近幾周以來,Google的自研晶片作為Blackwell晶片的一種可行替代方案,受到了越來越多的關注。Google雲內部高管透露,擴大TPU的市場採用率,有望幫助公司搶佔輝達年收入份額的10%。不同於輝達,Google並不向其他公司出售其TPU晶片,但會將其用於內部任務,並允許企業通過Google雲來租用。Google發言人在先前一份聲明中提到:“我們對自研TPU和輝達GPU的需求都在加速增長。我們將一如既往地同時支援這兩種技術。”輝達CEO黃仁勳在本月早些時候的財報電話會上也談到了來自TPU的競爭。他指出,Google本身就是輝達GPU晶片的客戶,Gemini模型也可以在輝達的技術上運行。黃仁勳還提到,他一直與GoogleDeepMind的CEO德米斯·哈薩比斯(Demis Hassabis)保持聯絡。黃仁勳稱,哈薩比斯給他發簡訊表示,科技行業裡認為“使用更多的晶片和資料可以打造更強大的AI模型”的理論——也就是AI開發者常說的“規模化法則(scaling laws)”——依然成立。輝達認為,規模化法則將帶動對其晶片和系統形成更強勁的需求。 (科創板日報)